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It is shown that useful information concerning the flow in the neighbourhood of 
the various separation and stagnation points in the laminar near wake of a 
blunt-based two-dimensional wedge can be learned from the locally valid 
Stokes type series solutions to the incompressible NavierStokes vorticity equa- 
tion derived previously by Dean & Montagnon (1949) and Moffatt (1964). This 
theory, which is in qualitative agreement with the experiments of Hama (1967) 
and Donaldson (1967), shows that the flow separates from the base of a blunt- 
based body and not from its trailing edge. The series solution for the two-dimen- 
sional stagnation point is treated in detail and compared with Howarth’s (1934) 
numerical solution in order to study the convergence and conditions for complete- 
ness of the Stokes type series solution. Finally, the wake rear stagnation point is 
examined to provide insight into the problem of wake closure. 

1. Introduction 
The detailed description of the laminar, hypersonic, near wake behind a 

blunt-based body has proved to be one of the most difficult and important 
problems in modern fluid mechanics both from a mathematical and conceptual 
viewpoint. One aspect of this problem which has been the subject of continuing 
interest is the detailed understanding of the local phenomena associated with the 
three elliptic singular points: the separation point, the base stagnation point and 
the rear stagnation point that form the vertices of the entrained flow region 
(see figure 1). Of particular interest is the local behaviour whereby the flow first 
separates at  a blunt-based trailing edge and then reattaches further downstream 
to form a closed wake. It is the theme of the present paper to show that insight 
into both these phenomena can be obtained from local Stokes type series solu- 
tions. 

Some of the recent developments relating to the above problem areas shall 
now be briefly reviewed. We start with separation point flow. The series of 
experiments just completed at the Je t  Propulsion Laboratory by Hama (1967) 
and the corroborating experimental results of Donaldson (1967) have pointed 
to a number of anomalies in the theory developed by Weinbaum (19663) and 
Weiss & Weinbaum (1966) for the expansion and separation process that occurs 
at  a blunt-based trailing edge. These authors adopt an inviscid rotational model 
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for the supersonic portion of the expanding boundary-layer flow. It is assumed 
that the origin of the expansion fan is positioned at the corner and that separation 
occurs at  the trailing edge. Rotational characteristic calculations based on this 
model are then performed to study the interaction of the expanding boundary 
layer with an essentially constant pressure base region. Such a model predicts 

sion 

Far wake (turbulent) 

Transition zone ‘ Dividing 
streamline 

FIGURE 1. Schematic diagram of near wake flow field. a, separation point. b,  base 
stagnation point. c ,  rear stagnation point. 

that the reflected waves from the constant pressure region will coalesce typically 
5 to 10 boundary-layer thicknesses downstream of the corner to form the well- 
documented ‘lip’ or separation shock wave (see figures 1 and 2). Hama’s detailed 
experiments indicated that this shock formation distance is an order of magnitude 
too large; his measurements show this distance is typically less than a boundary- 
layer thickness, and that the foot of the shock wave appears to be located beneath 
the corner and adjacent to the base wall (see figure 2, plate 1). Moreover, the 
accompanying static pressure measurements show that the wall pressure does 
not fall monotonically across the corner, as most investigators have assumed till 
now, but reaches a minimum at some distance small compared to a boundary- 
layer thickness, just prior to or after the corner. The pressure along the rear wall 
then increases sharply with distance from the corner and asymptotically ap- 
proaches the base pressure value from below after a distance of the order of 
several boundary-layer thicknesses. Except for the basic wave mechanism, which 
is responsible for the lip shock, all these observations are at  variance with the 
inviscid model described above. To explain these discrepancies it was felt that 
more had to be learned about the details of the viscous separation process and, 
in particular, about the manner in which pressure signals from the low-pressure 
base region are communicated across the corner. Three characteristic length 
scales are present; an inertial-viscous interaction distance, the boundary-layer 
thickness; a pressure-viscous interaction distance, the Stokes radius; and a 
finer scale in which the near equilibrium continuum description provided by 
Navier-Stokes viscous stresses is no longer valid, the Knudsen radius. A quali- 
tative picture of the pressure behaviour on the first length scale is available from 
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Hama’s measurements, which were taken to within approximately half a boun- 
dary-layer thickness of the corner. On the Stokes length scale one would antici- 
pate the velocity to be continuous everywhere, but the pressure and density to 
be singular at  the origin to accommodate the rapid changes in these variables 
that are taking place on the Knudsen length scale. In  the Stokes region, where the 
lowest order force balance is between pressure and viscous forces, the effect of 
compressibility on the viscous terms in the momentum equation enters through 
the thermal dependence of the viscosity coefficient, which is a higher order effect 
if a zeroth order temperature slip does not occur at  the wall, and indirectly 
through the density dependence of the continuity equation. Thus, if the velocity 
field and streamline patterns for a compressible and incompressible flow are 
qualitatively similar in the viscous region, their pressure distributions should 
likewise be qualitatively similar in this region. The comparison of the results of 
the incompressible theory with Hama’s experimental data appears to bear out 
this conjecture.-j- The incompressible analysis is also of interest in itself. There 
has been some controversy as to whether or not the wall shear stress vanishes a t  
a blunt-based trailing edge for an incompressible fluid (Viviand & Berger 1965). 

For the other two singular points, the base and rear stagnation points, the 
incompressible assumption is not as severe an approximation. For all three 
singular regions we then use a Stokes type series expansion of the incompressible 
Navier-Stokes vorticity equation. The vorticity formulation is chosen since the 
flow variable whose behaviour is least well understood, the pressure, does not 
appear explicitly. When the singular point is part of a solid boundary, the leading 
terms of the series are the slow motion eigenfunctions derived by Dean & Mon- 
tagnon (1949) and extended by Moffatt (1964) for ‘creep’ flows interior and 
exterior to a sharp dihedral angle. Anumber of investigators have also attempted 
to construct iterative solutions to the non-linear Navier-Stokes equation starting 
with the Stokes type solution. For example, Carrier & Lin (1948) and, more 
recently, Lugt & Schwiderski (1965) have employed this technique to describe 
the leading edge flow past a flat plate. The latter authors suggest that integrals 
of the non-linear Navier-Stokes equation for the flow in the vicinity of a 
dihedral angle can, in general, be constructed in an exact and linear manner in 
terms of the fundamental slow motion solutions. The present analysis shows this 
suggestion to be false. Additional insight into this question can be had by studying 
the properties of the Stokes type series solution about a two-dimensional stagna- 
tion point. Lugt & Schwiderski also derive the first few terms of this series solu- 
tion, but they do not discuss its physical significance, rate of convergence or 
conditions for completeness. When each of the terms is carefully analysed to 
examine the detailed coupling between viscous and inertial effects and the series 
solution compared with Howarth’s (1934) exact numerical solution, one finds 
that the pressure field is comprised of two fundamentally different components, 
one associated with the viscous stresses produced at  the boundary and the 
second with the external flow. Only for rather special flow geometries is the 

7 Roache (1967) has just confirmed the qualitative similarity between the behaviour 
of the incompressible and compressible flows in his numerical solution of the incompressible 
and compressible flow in the vicinity of a sharp corner. 
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Stokes type series sufficiently general to describe the motion due to the latter 
component. These results are closely related to the theory of inner and outer 
expansions. Harper (1963) has investigated the nature of the viscous and in- 
viscid flow regions in the vicinity of the base stagnation point. He has shown that 
even though the entrained flow has vorticity, the inviscid flow in the immediate 
vicinity of the stagnation point boundary layer is nearly irrotational. Thus, the 
classical two-dimensional stagnation point analysis is also valid locally about the 
base stagnation point. 

One question of general interest that may be of special importance with regard 
to the rear stagnation point is whether the constraints imposed by the three 
singular points affect the over-all motion, or are these constraints higher order 
effects that only require the flow to adjust locally. For real fluids satisfying vis- 
cous boundary conditions, this question is unanswered; for ideal inviscid flows, 
the former is true. It is well known, for example, that the location of the separation 
point on a body uniquely determines the circulation about the body and hence 
influences the entire flow pattern. The classical illustration is the Kutta condi- 
tion in inviscid airfoil lifting theory. The fact that separation is observed to 
occur at  or very near the trailing edge of a sharp-edged airfoil at  small angles of 
attack in a real fluid suggests that there is a close relationship between the 
viscous and inviscid separation conditions. This conjecture is supported by the 
present viscous analysis. This theory shows that a large asymmetric freestream 
component is needed to displace the trailing edge separation point more than a 
Stokes radius from a sharp trailing edge. It has been suggested by Weinbaum 
(1967) that the rear stagnation point may play a role in the wake that is similar 
to the Kutta condition in inviscid airfoil theory. First, the rear stagnation point 
represents a point of velocity coupling between the retardation of velocity of the 
flow along the dividing streamline prior to stagnation and the initial growth of 
velocity of the flow that is redirected back toward the base. This local flow, 
therefore, may be important in determining the circulation about and hence 
vorticity within the entrained flow region. Secondly, the mechanism of wake 
closure could possibly provide a uniqueness constraint for the circulation if there 
were some invariant behaviour characteristic of the local stagnation point flow 
that was independent of the external flow.? 

In general, the arbitrary constant coefficients that appear in the leading terms 
of a locally valid series solution depend upon the gross features of the external 
flow, such as its flow direction and level of energy input. Thus, if a unique 
closure condition is to exist it should be independent of these constant coefficients 
which characterize the gross features of the external flow. While the Stokes type 
series solutions considered herein do show the existence of such a condition, these 
solutions cannot be used to provide insight into how this condition is to be related 
to the overall motion. The latter involves the difficult unsolved problem of 
matching inner Stokes flows with outer inertial flows. 

7 Such a constraint would not be inconsistent with the so called ‘throat constraint ’ 
of Crocco & Lees (1952) theory which is derived from linear momentum considerations. 
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2. General theory 
The governing equations which shall be used to describe qualitatively the 

various stagnation and separation point flow phenomena are the incompressible 
Navier-Stokes equations. One introduces the following dimensionless variables : 

U* U* P=- P* r = -  r* l = -  P* 
L '  P m  

u = -  ) v = -  
u, '4x2 P m  u2,' 

(dimensional quantities are shown with asterisks), and chooses L = v,/u, as the 
characteristic reference length. This corresponds to setting Re, = u,L/v, = 1; 
thus, r = 1 is representative of the dimensions of a Stokes type slow flow region 
about the singular point. The dimensionless conservation equations are: 

uvg uu 
r r  

uvr+-+-= 

a(ur) av 
ar a8 

+-- = 0. .__ (2.4) 

Here = up + vB, where the polar co-ordinates ( r ,  8) are the most convenient 
co-ordinates for satisfying the boundary conditions in the problems of interest. 
One eliminates p between (2.2) and (2.3), to reduce the number of dependent 
variables, and introduces the two-dimensional stream function @: 

1 
u=;$@, u =  -$ r' (2.5) 

This is one convenient way of reducing (2.2), (2.3) and (2.4) to one equation in a 
single unknown function $: 

Note, we have not divided through by r ,  since we shall want to examine the 
limiting behaviour of each of the terms in (2.2), (2.3) and (2.6) as r+O. 

Let us assume, for the moment, that $ behaves as rm, m not necessarily 
integer, as r+O. The non-linear term in (2.6) and the acceleration terms in 
(2.2) and (2.3) behave as r2m-3 as r+O, while the linear viscous terms in (2.2), 
(2.3) and (2.6) behave as rm-3 as r+O. Thus, the requirement that the viscous 
terms dominate and that the flow exhibit a Stokes type slow flow behaviour in 
some small neighbourhood of r = 0 is that m > 0. This requirement, however, is 
too weak since physical considerations require that the velocity be continuous 
across the corner. From (2.5)) this last condition is satisfied if m >, 1, where the 
inequality sign applies for a solid boundary if one allows no slip. The fact that the 
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shear stress and the pressure are singular at  r = 0 when m < 2 should not be a 
matter of serious concern. Pointed edges with zero bluntness are a mathematical 
idealization that is not found in nature, and it is not surprising that within the 
framework of the Navier-Stokes equation, where the linear stress-strain relation- 
ship describes only small departures from equilibrium, such edges will produce 
an infinite shear stress on a fluid element at  r = 0 if no slip is allowed. The 
physically meaningful limitation is that the integrated shear or the viscous 
force acting a t  the sharp edge be bounded. Since the latter behaves as rm--l, we 
again require that m > 1. 

Thus, the leading term $(O) of an expansion for $ about a sharp edge should 
exhibit a Stokes type flow behaviour, hence satisfy the biharmonic equation, 

+ ; - (2.7) 

whenever $(O)+O more slowly than r as r+O. There are numerous solutions to 
the biharmonic equation in polar co-ordinates; however, as Dean & Montagnon 
(1949), Moffatt (1964), and Lugt & Schwiderski (1965) have previously shown, 
the only solutions which satisfy the no slip condition along a 8 = constant line 
are of the form, 

f ,  = A ,  sin mB + A,  sin [(m - 2 )  81 + A ,  cos mB + A ,  cos [(m - 2 )  61 

(2.8) $0’ = rmf,(O), 

(m  $. Z ) ,  (2.94 
f, = A,sin28+A,8+A3cos28+A4 (m = 2), (2.9b) 

where m is any number, real or complex, and the constants Ai must be chosen so 
as to satisfy all boundary and matching conditions. In  the present study, we shall 
be concerned only with the solutions for m real since they describe the flow near 
sharp edged obstacles. The solutions for m complex represent viscous vortices in 
a sharp corner (Moffatt 1964). Since (2.7) is linear, any number of solutions can 
be superposed provided each satisfies the boundary conditions. 

3. Slow motion eigenfunctions 
For a solid boundary, let the wall angle 6, be measured relative to the x-axis 

or angle bisector as shown in figure 3. 8, = in, %n,n then represents the base 
stagnation point, the 90-degree blunt-based trailing edge, and the flat plate 
leading or trailing edge in that order. The zero slip boundary condition, u. = v = 0 
at 8 = f 8,, requires that 

For a symmetric flow, the stream function is antisymmetric about the plane 
y = 0. A ,  = A ,  = 0, and if A ,  and A ,  are to have a non-trivial solution and satisfy 
the boundary-conditions equation (3. l ) ,  

msin280-2(sinm6,)cos[(m-2)8,] = 0 (m + 2). (3.2a) 

The corresponding result for an antisymmetric flow ( A ,  = A ,  = 0, A ,  and A ,  += 0) 

(3.2b) 
is 

The case rn = 2 for ( 3 . 2 ~ )  is obtainable by differentiating with respect to m. 

f 1 (  f 4)) = 0, f;( t- 0,) = 0. (3.1) 

msin28,+2(cosm8,)sin[(m-2)8,] = 0 (m + 2). 
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The solutions to ( 3 . 2 ~ )  and (3.26) are shown in figure 4 and table 1. These 
numerical results, which were obtained independently by the author, are the 
same as those reported by Lugt & Schwiderski (1965); however, our use and in- 
terpretation of these results will differ. First one notes that, although there is 

Ij 

FIGURE 3 .  Schematic diagram of dihedral angle. 

8, degrees 

FIGURE 4. Roots of equation ( 3 . 2 )  for power m = m(8,) of wedge singularity. 
__ , equation ( 3 . 2 a ) ,  symmetric flow; - - - , equation ( 3 . 2 b ) ,  antisymmetric flow. 

an infinite multiplicity of symmetric and antisymmetric eigenvalues for both the 
Bo = in and Bo = n cases, there is only one symmetric and one antisymmetric 
solution curve that connects these two cases when m is real. Intuitively, one would 
expect that the flat plate is not an isolated case but rather the limiting case of a 
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flat wall collapsed into a plane. Thus, the streamline pattern in the vicinity of the 
edge should not change abruptly as one varies the dihedral angle in the range 
+n- Q 8, Q n-. This is only possible if one chooses lowest order eigenvalues for m 

8 0  

79.6 
80 
85 
90 
95 

100 
105 

8 0  

73-1 
75 
80 
85 
90 
95 

100 
105 

Symmetric roots, equation (3.2a) 

m 80 m 8, 
3.746 110 2.360 145 
3.661 115 2.249 150 
3.254 120 2.149 155 
3.000 125 2.061 160 
2.800 130 1.981 165 
2-631 135 1.909 170 
2.480 140 1.844 175 

180 

Antisymmetric roots, equation (3.2 b) 
m 

2.748 
2.534 
2.288 
2.125 
2.000 
1.900 
1.819 
1.752 

8 0  

110 
115 
120 
125 
130 
135 
140 
145 

m 

1.697 
1.652 
1.616 
1.586 
1.563 
1.544 
1-530 
1.520 

80 
150 
155 
160 
165 
170 
175 
180 

m 

1.785 
1.731 
1.683 
1.638 
1.598 
1.562 
1.530 
1.500 

rrc. 

1.512 
1.507 
1.503 
1.501 
1.500 
1-500 
1.500 

TABLE 1. Roots of equation (3.2), m = m(19,) 

that are continuous in the range in- ,< 8, < n-. Since one can show indisputably, as 
we shall in $ 5 ,  that m = 3 when 8, = #n-, m is Q for a flat plate as Carrier & Lin 
predicted. The flat plate solution suggested by Lugt & Schwiderski, which is 
based on the eigenvalues m = 3 and g, is probably not physically meaningful. 
One notes from figure 4 that the eigenvalue curves through these points do not 
permit solutions of the same general character as the flat plate solution for a 
wide range of wedge angles intermediate between the 8, = in- and n- cases. 

Two other points are of interest in figure 4: (a )  the significance of the higher 
order solutions for m, and (b)  the absence of any real solutions for m for 8, < 79.6 
and 73-1 degrees for symmetric and antisymmetric flows, respectively. In  
reference to (a) ,  the complete series solution for the 8, = in- case in 5 5 shows that 
the lowest order eigensolution for $(O) describes only the local pressure field due 
to the dilation and rotational distortion of the fluid element produced by the fluid 
motion adjacent to the boundary. The inertial motion of the fluid outside the 
boundary layer also produces a pressure field that is transmitted through the 
boundary layer into theviscous region which must be balanced by viscous stresses. 
This latter pressure-viscous force balance must also satisfy the viscous zero 
slip boundary conditions. For the 8, = in- case, this force balance is described by 
the next higher order eigensolution for $(O). For other wedge angles, higher order 
eigensolutions corresponding to m real do not always exist (see figure 4); and even 
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where they do exist, there is no assurance that any combination of these solutions 
is sufficiently general to describe the effect in the viscous region of the non-linear 
inertial pressure field imposed by the external flow. Point ( b )  is treated by Moffatt. 
As mentioned earlier, complex solutions for m do exist for these angles. These 
solutions describe a series of decaying viscous eddies in a sharp corner. 

The leading terms of the series that describe the Stokes type region for the 
flow external to a dihedral angle are from (2 .9a ) ,  (3 .1) ,  ( 3 . 2 a )  and (3 .2b ) :  

where the arbitrary constants A ,  and A ,  have been redefined. The eigenvalues 
m, and m, correspond to the antisymmetric and symmetric flow components, 
respectively. Well-known special cases of (3 .3)  are the Carrier & Lin flat plate 
leading edge solution; A ,  = 0, A ,  + 0, m, = 8, and the Oswatitsch solution for 
the separation point flow at a solid boundary; A ,  and A ,  $. 0, m, = m, = 3. Note 
that there appears to be no distinction between the solutions for a leading or 
trailing edge other than the magnitude of the constants and the fact that the 
sign of $do) has to be adjusted to provide the proper flow direction. The implica- 
tion is that the flow right near the leading or trailing edge is independent of the 
details of the energy input or driving mechanism at distances large compared 
to the Stokes radius. 

4. Higher order solutions 
In this section, we shall briefly outline a method for obtaining the higher order 

terms in a Stokes type series. We emphasize that the difficult mathematical 
problem is not to construct the series but to determine the unknown constant 
coefficients that appear and to show that the series is complete. These points 
shall be explored further in the next section for the case B0 = in. The generating 
function for the Stokes series is of the form 

where the mj represent the various eigenvalues of (3 .2)  and N is the total number 
of terms required to describe the complete pressure-viscous balance in the Stokes 
region, provided terms of the type (4.1) are suitable for describing the pressure 
field characteristic of the external flow. One need not include all the mi, e.g. 
the case Bo = in has an infinite number of eigenvalues, nzj = 3 , 4 , 5 ,  . .., etc.; 
however, only the terms for mi = 3 and 4 are required to construct the series. 

The series expansion takes the form (compare Carrier & Lin (1948) and Lugt 

$ = $(O) + +(1) + $(2) + . . . , & Schwiderski (1965)) 
(4.2) 
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and the Li are the appropriate non-linear convective operators obtained from the 
left-hand side of (2.6). 

The mechanics of solving the linear system of equations (4.3) is straightforward, 
and is described in Lugt & Schwiderski (1965) and Weinbaum ( 1 9 6 6 ~ ) .  The 
solution for ~ ( l )  contains $N(N + 1) terms of the form 

@yi = r%+mk)f;2(0) ( j  = 1,2,  . . . , N ;  Ic = 1,2, . . . , - N ) ,  

one for each power of r form that occurs in the inhomogeneous part Ll(@(0)). 
Each fN(8) must obey the wall boundary condition 

j’$( 5 6,) = f$”( 0,) = 0, (4.4) 

if there is to be no slip a t  the body. Except for the special cases 0, = &r and m, 
the solutions to the reduced equations for thej’g do not vanish at the boundaries. 
The homogeneous and particular integrals can, therefore, be added, and the 
constants in the homogeneous integral determined so as to satisfy the boundary 
conditions (4.4). These constants depend only on the wall angle 8, and the con- 
stant coefficients A,  of the fundamental slow motion eigenfunctions. The series 
development can be continued in a like manner to find $@), 9V3), etc., and all the 
constants in the higher order terms related to the Ai. When 8, = 7~ and m, = # 
the particular solution contains secular terms which when added to the integral 
of the reduced equation do not satisfy the zero-slip condition. A series based on 
powers of r alone is not sufficiently general and one must extend the series to 
include the so-called ‘associated separable slow-motion solutions of order n ’ 
(see Lugt & Schwiderski 1965) 

(4.5) 

These solutions, which also obey the biharmonic equation, balance the contribu- 
tions of the secular terms at the wall and thereby enable the zero-slip condition 
to be satisfied. The other special case, 0, = &r, is discussed in the next section. 

5. The base stagnation point 
The theory developed in $$2-4 will now be applied to the case 0, = $7r and 

the results compared with Howarth’s (1934) exact numerical solution of the 
governing differential equations. The mechanics of deriving the first few terms of 
this series solution is presented in the Lugt & Schwiderski paper. These authors 
do not explore these results further. The series expansion can also be obtained 
from the appropriate Falkner-Skan boundary-layer equation. The primary 
object here is not to derive additional terms in this series but to (i) investigate 
under what conditions a Stokes type series solution about a separation or stagna- 
tion point will converge to the correct solution in the flow region where inertial 
effects are important, (ii) study the rapidity of convergence of such a series, and 
(iii) examine the term-by-term coupling between the viscous and inviscid flow 
regions. 

It is well known that for an incompressible two-dimensional stagnation point 
flow the boundary-layer thickness is constant, since the thinning of the boundary 



Singular points in the laminar near wake $ow jield 49 

layer due to the acceleration of the fluid by the pressure fleld is just balanced by 
the thickening of the boundary layer due to diffusion. Because of this, the dis- 
placed external potential flow $e is also that of a plane flow 

$t? = - P X Y ,  (5.1) 

where p is an arbitrary positive constant. We normalize the equations with 
respect to /3 by stretching the distance co-ordinates: 

f = ( P X ) * ,  7 = (PY)*, R = (P+. (5.2) 

Because of the planar property of the viscous flow that u, = F ( x )  one can show 
readily that the components of the Navier-Stokes momentum equation parallel 
and perpendicular to the boundary reduce to 

$5$g?) = - 7, (5.3) 

in that order, where u, = $u and uy = -$,. The vorticity equation (2.6) is 
unchanged except that R appears in place of r .  

From (3.3) and figure 4, the two leading terms of a Stokes type series which 
correspond to the two lowest order eigenvalues mj = 3 and 4 are 

= A,R3(sin 6'+ sin 36') + A,R4(sin 48+ 2 sin 26') 

= 4A,7E2+ 8A,7f3. (5.5) 

The important observation is that these two terms play a different role in the 
generation of the series expansion and have a different physical significance. The 
first term provides the dominant contribution to the normal pressure gradient 
in the viscous region, equation (5.4), but plays no role in balancing the pressure 
gradient in the 7 direction, p v  = -PT, established by the inviscid motion of t,he 
external flow. On the other hand, the second term provides a higher order contri- 
bution to the normal pressure gradient, but is the key term coupling the inertial 
motion of the outer flow with the inner viscous region. According to boundary- 
layer theory, the external pressure gradient is transmitted through the viscous 
layer to the wall where it is balanced by the shear stress gradient (a /@)  (au,/a[) 
at the boundary. Thus, if the A ,  term is to balance the pressure gradient produced 
by the external flow in the limit as R-tO, then from (5.3), A ,  = &. In  contrast, 
the pressure-viscous balance attributed to the A, term is due to the dilation and 
rotational deformation of the fluid element near the boundary caused by the 
motion of the fluid element per se. The amplitude of this viscous deformation is 
related to the outer flow by the value of the constant A,. No further terms are 
required to describe the complete pressure-viscous force balance near R = 0. 
The term in R5 in the Lugt & Schwiderski solution should not be present. 

Following the procedure outlined in §4, the author derived the first eleven 
terms of the series solution, using just the two Stokes terms, equation (5.5), as 
generating functions. The detailed solution is presented in Weinbaum (1966a). 

4 Fluid Mech. 33 
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All the constants of the higher order terms can be related to A,. Letting a = 4A,, 
one obtains 

a 

181a3 41a2 
- .~ (13+ ...]. (5.6) 

(5040) (1 1,880) ‘12 + (11,340) (17,160) 

The series in brackets in (5.6) is just Howarth’s function q5. a, the only remaining 
undetermined constant, can be evaluated by either matching the series solution 
with Howarth’s value for the shear stress at the wall, in which case a = 0.6162938, 

I 

Edge of 
boundary 
layer 
UY/UY‘ = 0990 

0 0 5  1.0 1.5 2 0  2 5  30 

E 
FIGURE 5.  Convergence of series solution for Q, ( E ) ,  8, = &r case. 

or by choosing a such that q5 exhibits the proper behaviour at  the edge of the 
boundary layer, i.e. I$[-+ 1; the series, of course, must contain enough terms to 
describe adequately this flow region. In  figure 5 and in table 2 we have compared 
Howarth’s solution and the series solution for q5, having truncated the latter 
after 1, 2, 3, 4, 5, 8 and 11 terms, respectively. The third and fifth terms of the 
series represent the first inertial corrections to the A, and A ,  terms, and the fourth 
term the first inertial coupling of the two pressure effects. As shown, the five- 
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term series truncation is accurate to within about 1 % up to 6 = 2.4, at  which 
point UJU,, = 0.990. 

#([) series solution 

$(5) Number of terms 
7 Howadh ( 1934) 7----------L------ 

f exact solution 1 2 3 4 5 8 11 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.1 0.0060 0.00616 0.00600 0.00600 0.00600 0.00600 0.00600 0.00600 
0.2 0.0233 0.02465 0.02332 0.02332 0.02332 0.02332 0.02332 0.02332 
0.4 0.0881 0-09861 0.08794 0.08807 0.08806 0.08806 0.08806 0.08806 
0.6 0.1867 0.22187 0.18587 0.18685 0.18669 0.18670 0.18670 0.18670 
0.8 0.3124 0.39443 0.30909 0.31324 0.31235 0.31243 0.31242 0.31242 
1 so 0.4592 0.61629 0.44963 0.46229 0.45886 0.45926 0.45923 0.45923 
1.2 0.6220 0.88746 0.59946 0.63097 0.62074 0.62217 0.62202 0.62203 
1.4 0.7967 1.20794 0.75060 0.81869 0.79291 0.79710 0.79660 0.79665 
1.6 0.9798 1.57771 0.89505 1.02780 0,97036 0.98101 0.97957 0.97975 
1.8 1.1689 1.99679 1.02479 1.26402 1.14757 1.17186 1.16813 1.16874 
2.0 1.3620 2-46518 1.13184 1,53698 1.31785 1.36865 1.35977 1.36154 
2.2 1.5578 2.98286 1.20820 1.86068 1.47248 1.57146 1.55176 1.55639 
2.4 1.7553 3.54985 1.24585 2.25397 1.59966 1.78166 1.74032 1.75135 
2.6 1.9538 4-16615 1.23681 2.74107 1.68338 2.00211 1.91933 1-94367 
2.8 2.1530 4.83174 1.17308 3.35201 1.70209 2.23752 2.07824 2.12868 
3.0 2.3526 5.54664 1.04664 4.12317 1.62718 2.49504 2.19903 2.29815 

TABLE 2. Comparison of series and exact solution for $([) for 8, = &r case 

It is evident from the foregoing results and discussion for the 8, = in case that 
for the general case one cannot construct in an exact and linear manner integrals 
to the non-linear Navier-Stokes equation which are based on fundamental slow- 
motion solutions. A unique description of the Stokes flow region involves two 
distinctly different pressure-viscous force balances, and a Stokes type expansion 
will not be complete unless both force balances are taken in account. While one 
can write down for any convex angle the leading symmetric and antisymmetric 
terms of the series which describe the local pressure field established by the vis- 
cous stresses in the vicinity of the singularity, this is not true for the lowest order 
terms which describe the inertial component of the pressure field that is felt 
through the boundary layer. One notes from figure 4 that there is a wide range 
of angles 100 < 8, < 160 degrees for which no such slow motion eigenfunctions 
exist with m real. Though, as Moffatt (1964) and Lugt & Schwiderski (1965) show, 
complex eigenfunctions do exist for these angles, the pressure fields characteristic 
of these eddy type solutions are not representative of the inertial motion one 
would expect for the flow past a sharp corner. In general, the displacement effect 
of the dissipative mechanisms in the vicinity of the singular point will cause a 
significant distortion of the actual body shape as far as the outer inviscid flow is 
concerned. Thus, unlike the 8, = in case, where the displaced external flow is 
known, equation (5. l), and the inertial pressure field specified, the inertial motion 
in the general case is not known in advance and has to be determined as part of 
the solution. This difficult problem of matching inner Stokes flows with disturbed 
outer inertial flows has still t o  be solved. 

4-2 
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6. The blunt-based trailing edge 
Existing viscous layer theories, e.g. Denison & Baum (1963) and Kubota & 

Dewey (1964), for development of the separated boundary flow on a blunt-based 
body are in the large part extensions of Goldstein’s (1930) zero-thickness flat- 
plate solution. These extensions are an inadequate representation of the flow near 
the separation point of a blunt-based body for they invoke the following simpli- 
fying assumptions: (i) all upstream influence can be neglected; the boundary- 
layer flow is both parallel to  the wall and has a Blasius profile at  the separation 
point. (ii) Normal momentum need not be conserved; the boundary-layer equa- 
tions of motion are used locally. (iii) The zero slip boundary condition imposed by 
the rear wall can be violated; this is a critical oversimplification since there can 
be no angular momentum Reynolds number effect for the base region if one neg- 
lects the resisting torque a t  the rear wall. Also, the initial growth of velocity 
along the dividing streamline should be significantly inhibited by the presence 
of the rear wall. (iv) The pressure is uniform throughout the entire flow; this is a 
serious violation in both the slow flow region surrounding the separation point 
and in the inertial region where lowest order pressure gradients are produced by 
the corner expansion. (v) The inclination angle of the dividing streamline can be 
ignored in the mixing process that takes place downstream of the separation 
point; this is a poor approximation since the shearing stress induced on the rear 
wall, hence the resisting torque exerted on the recirculating flow, is very sensitive 
to the separation angle of the dividing streamline. This angle can be as large as 
50 degrees in some problems of interest. (vi) The dividing streamline separates 
from the body at  the trailing edge. 

Two different approaches will be pursued and the results compared in an 
attempt to isolate the effects of upstream influence. In  the first approach, one 
neglects upstream influence and assumes separation to occur at  the trailing edge, 
but relaxes simplifying assumptions (ii) to (v). The procedure is similar to Gold- 
stein’s flat plate trailing edge solution in that we seek a locally valid series solu- 
tion in the right half plane which satisfies a Blasius boundary-layer profile at  
separation. The basic differences are that we employ the full incompressible 
Navier-Stokes equation, satisfy the non-slip condition at  the rear wall, place no 
restrictions on the pressure field in advance, and allow a non-zero initial inclina- 
tion angle for the dividing streamline. In  the second approach we relax, in addi- 
tion, simplifying assumptions (i) and (vi) and seek a Stokes flow solution about 
the trailing edge that is based on the analysis presented in $ 3  2-4. The arbitrary 
constants appearing in the solution are left unspecified. Instead, one parametric- 
ally varies these constants to see how they influence the location and shape of the 
separation streamline. 

No upstream injuence 
The x and y co-ordinates have their origin at  the trailing edge, and are taken per- 
pendicular and parallel to the rear wall respectively, which is assumed perpen- 
dicular to the upper surface of the body (see figure 6). The boundary conditions 
a t  x = 0 are that the initial profiles for the velocity components can be expressed 
as an infinite series in integer powers of y for y > 0 (the Blasius profile is just a 
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special case of this series), and that all velocities vanish for y < 0. Thus, we 
write 

u = 0, v = - C airi for x = 0, y > 0, 
rn 

i= 1 
(6.1) 

and u = v = O  for x = O , y < O .  (6.2) 

0.20 - 
Blunt base 
u = -30” 

FIGURE 6. Zeroth-order solution equation (6.4) for blunt-based trailing edge with no 
upstream influence. 

The dividing streamline @ = 0 separates from the trailing edge with an initia,l 
inclination angle a, 

$ = O  at B = a  as r+O, (6.3) 

which is determined by the expansion to the base pressure of the streamlines in 
the lower portion of the boundary layer. 

The separation point boundary value problem is then to develop a series solu- 
tion to (2.6) in the right half-plane which satisfies the boundary conditions 
(6. l ) ,  (6.2) and (6.3). One method of treating this boundary value problem is to 
generalize suitably the classical analysis developed by Goldstein (1930)  for the 
flat plate trailing edge. One introduces the transformed co-ordinates 6 = f(x) and 
9 = ylf(x) and seeks a series solution of the form 

II. = g ( 6 )  5 +i(T)P* 
i = O  

This approach is pursued by the author in Weinbaum ( 1 9 6 6 ~ ) .  In  the Goldstein 
flat plate trailing edge analysis, the lowest order balance is between inertial and 
viscous forces. f = xf, g = xQ and the governing equation for q50(~)  is non-linear 
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and must be solved numerically. In  the present theory u and v are of the same 
order of magnitude near the trailing edge, and the lowest order force balance 
near r = 0 is between viscous and pressure forces. f = x, g = x2 and the governing 
equation for q50(q) is linear and can be solved analytically. However, one can 
show that this equation for q50(q) is equivalent to (2.7), and that the solution of 
interest is the case m = 2 ,  equation (2.9b).  The boundary conditions (6 .1) ,  (6.2) 
and (6.3) determine the constants Ag.  This solution for the leading term in the 
series solution for $ is 

@(O) = r2{sin 28 + 28 + m - [(m + 2a) see2 a + 2 tan a] cos2 e}, (6.4) 4 n  

where a1 = (auz/ay)lz=, is the wall shear at the trailing edge. 
In  figure 6 we have plotted equation (6 .4 )  for a, = 0.66412, the value of a, 

corresponding to the Blasius flat plate solution, and a = - 30 degrees. To lowest 
order, the dividing streamline is a straight line. Within the framework of this 
simplified model, the shearing stress induced on the rear wall by the motion of the 
fluid above the dividing streamline is independent of y 

Therefore, the ratio (T of the wall shear on the upper surface at  the separation 
point, au,J~y~,,, = a,, to that on the rear wall, (6 .5) ,  depends only on the initial 
inclination angle of the dividing streamline when one neglects upstream influence. 
Some representative values of (T are given below: 

a (degrees) 0 1 -10 I -20 1 -30 1 -40 I -50 1 -60 I -70 

These results suggest that the initial inclination angle of the dividing streamline 
is significant in the angular momentum balance for the recirculating flow. This 
effect is neglected in present boundar-layer type mixing analyses. 

__. ~~- _____.- _ _ ~ _ _ _ _ _  ~ ~ . 

U 2.0 2.4867 3.0807 3.8358 4.8473 6.3092 8.6655 13.2626 

Upstream injuence 

In the foregoing analysis, the effect of the upstream influence on the pressure 
field across the corner was purposely omitted. One can easily show that one of the 
major shortcomings of the solution (6.4) is just the fact that the pressure field 
corresponding to this solution cannot be matched with the uniform pressure field 
of the Blasius solution at  x = 0, for y > 0. For x = 0 and y < 0, the rear wall, the 
pressure falls monotonically with distance from the corner. If one accepts the 
premise that the pressure field in the vicinity of the corner is qualitatively simi- 
lar for a subsonic and supersonic blunt-based trailing edge, then the pressure 
distribution along the rear wall predicted by (6 .4)  is also suspect since i t  is just 
the opposite trend from Hama's measurements mentioned earlier. 

Returning to figure 4, one sees that there are only two roots which satisfy 
( 3 . 2 ~ )  and (3 .2b )  when 8, = In. These roots, m, = 1.544 and m2 = 1.909, corre- 
spond to the antisymmetric and symmetric flow solutions in that order. In con- 
trast to the 8, = and m cases where there are an infinite multiplicity of slow 
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motion eigenvalues to choose from, there is no ambiguity when 8, = &r. From 
(3.3), the two leading terms for $(O) are 

9 ‘ 0 )  = A,rm1[cosml8+cot $(3m17r)cos [(ml-2)8]] 

+ A2rma[sin m2 8 - tan +( 3m27r) sin [(m2 - 2) el] + . . . . (6.6) 

8 = 0  

I I I I I I I 
I 

‘ - 0 6  ‘ - 0 4  ‘ -02  

- 0 4  ::E 
Ezv 

-05‘ 

FIGURE 7. Parametric study of the effect of upstream influence on the location and shape 
of the separation streamline. 

The equation of the separation streamline in the vicinity of r = 0, for the general 
case, is obtained by setting $(O) = 0 in (3.3): 

l/(mz-md 

* (6.7) ’I cos m, 8, 
-A, cosm,B- cos [(m, - 2) 81 

sin m2 8, 
sin [(m, - 2) O0] 

cos “m1- 2 )  601 

sin [(m2 - 2) 81 

( r = [  

The term in brackets in (6.7) is of O / O  form at 8 = -8,, the rear wall, and to  
determine the point of separation L’Hopital’s rule must be applied twice: 

I n  figure 7, equation (6.7) has been plotted with the ratio AJA, as a parameter, 
for the case 8, = @. The spectrum of possible separation streamline shapes is 
shown in the figure. The ratio AJA, is a measure of the varying amounts of the 
symmetric and antisymmetric components present in the solution. Starting with 
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A ,  = 0,  the purely symmetric solution, one finds that the direction of the separa- 
tion streamline turns toward the axis and the separation point moves away from 
the trailing edge along the rear wall as increasing amounts of the antisymmetric 
solution are added.? Thus, separation cannot occur at  the trailing edge for a wall 
with zero slip if the energy input at large distances is not symmetric. The angle 
a t  which the separation streamline leaves the wall is readily determined. The 
angle p between the radius vector and the tangent to the separation streamline 
is given by 

r d0 f i f 2  

dr f Z f ; - f l f ; '  
tan/?(@) = __ = (m2-m ) ~ 

where the equation of this streamline (6.7) has been written in the compact form 
o = ~ l f i ( O ) + r " z f ~ ( O ) .  At 0 = -0,, the rear wall, equation (6.9) is of O / O  form, 
since f , (  - 0,) = f;( - 0,) = 0. However, /?( - 8,) the flow separation angle can be 
determined through the repeated application of L'Hopital's rule. This result is 

m: sinm,0,- (ml- 2 ) 3 ( ~ ~ ~ ~ , 0 , )  tan [(m, - 2)8,1 
(ml- 1)cosm10, cot/3(-0,) = 

1. (6.10) 
m~cosm,O,- (m2-2)3(sinm20,) cot [(m,- 2)0,] 

(m, - 1) sin m2 8, + 
The interesting observation is that p( - 0,) is independent of the coefficients A ,  
and A,.$ Thus, the flow separation angle depends only on the wedge geometry or 
the angle 0,. One can show from equation (6.10) that /?( - 0,) decreases mono- 
tonically from a maximum of 90 degrees when 0,) = in- to zero degrees when 
0, = n-, and that for 8, = $n-, p z 41.2 degrees. 

A related problem of much interest is the separation condition at the trailing 
edge ofa sharp edged airfoil. For thin airfoils at  small incidence, it is an empirical 
observation that separation always occurs very close to the trailing edge, the 
Kutta condition. In  the inviscid theory, this condition is necessary to determine 
uniquely the circulation about the body. To study the viscous separation con- 
dition that exists in a real fluid, the analysis just described for the blunt-based 
trailing edge was repeated for a 5-degree half angle trailing edge typical of a thin 
airfoil, 0, = 175 degrees. It was found that to displace the separation point more 
than a Stokes radius from the trailing edge, the asymmetry ratio A J A ,  had to 
exceed z 8. Since A ,  and A ,  are directly related to the external flow above and 
below the airfoil, this suggests that significant asymmetries in the external flow 
are required to displace the separation point more than the characteristic viscous 
length from the trailing edge. Thus, the viscous forces near the trailing edge, 
although they act locally, can provide a very important constraint on the over- 
all motion. 

t The Reynolds number dependence of the coefficients A ,  and A,  enters through the 
coupling with the inviscid outer flow. Roache's (1967) numerical results suggest that the 
ratio AJA,  increases, and hence the separation point moves down on the base, as Re, 
decreases. In  the limit as Re, + co separation occurs infinitesimally close to the comer, 
whereas for the opposite limit Re, + 0 separation occurs at  the base stagnation point. 

8 H. E. Topakoglu independently discovered this result and reported it to the author in 
a private communication. 
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The pressure field in the neighbourhood of the corner is readily derived from 
( 2 . 2 ) ,  (2 .3 )  and (3 .3 ) :  

F - 2  cos [(m, - 2 )  01 

+const.+O(r2ml-2). (6.11) 

sin m2 8, 
- 4(m, - 1) A, (- ~~~~ 

sin [(mz - 2 )  0,] 

FIGURE 8. Streamline pattern and pressure field in the vicinity of trailing edge, AJA,  = 1.0. 

In  figure 8 we have plotted the trailing edge streamline pattern predicted by 
equation (6.6) for the case A,/A,  = 1, a situation representative of what one 
would expect to find in the base flow separation problem. Superimposed are the 
lines of constant pressure or isobars that obtain from (6.11) when 0, = in. The 
pressure scale is arbitrary. Note that the sharp expansion around the corner is 
followed by a recompression on the rear wall. This adverse pressure gradient 
causes the flow to separate on the base and suggests that the base pressure is 
approached asymptotically from below. The theory also predicts a small pres- 
sure rise along the upper surface starting roughly one Stokes radius ahead of the 
corner. From (3 .5 )  one can show that there is a pressure minimum, p r  = 0, on 
the upper surface at  

r = [- ] . (6.12) 

For A,/A,  = 1, this pressure minimum occurs a t  r z 1.2; p = - 127.0 at this 
point using the scale shown in figure 8. Preceding this minimum, p falls mono- 

A,(m, - 1) (m, - 2) cot 4(3m17r) cos i(3m177) l/(ma-ml) 

A,(m,- 1) (m2- 2 )  tan 4(3m7r2) sin $(3m27r) 
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tonically as one approaches the corner starting several boundary-layer thick- 
nesses ahead of the corner. The major portion of the pressure drop across the 
corner occurs in a distance that is small compared to the Stokes radius. Therefore, 
as one might expect, the pressure is ‘weakly singular ’ at r = 0 in the terminology 
of Lugt & Schwiderski. The shear at the trailing edge is finite rather than zero 
as some investigators have suggested. The separation on the rear wall seems neces- 
sary to avoid the discontinuity in shear that would have resulted had separation 
occurred at  the trailing edge and the shear not been zero. Finally, the separation 
point behaviour just described is in qualitative agreement with Hama’s experi- 
ments. 

To summarize briefly the results in this section, upstream influence produces 
the following changes in the flow near the trailing edge of a blunt-based body: 
(i) the separation point is dislodged from the trailing edge if there is any asym- 
metry in the external flow, (ii) the separation streamline is not a straight line 
but has a significant curvature near the separation point, (iii) the separation 
angle depends only on the wedge angle and is independent of the external flow, 
(iv) the flow undergoes a compression along the rear wall beneath the corner so 
that the base pressure is approached from below, (v) a ‘ weak singularity’ in 
the pressure field is admissible at r = 0 to allow for the sharp drop in pressure 
across the corner that occurs on the microscopic length scale, and (vi) the shear 
is both finite and continuous at  the trailing edge. 

7. The supersonic trailing edge 
In  this section, the foregoing insights into the behaviour of the viscous under- 

layer will be combined with our existing knowledge of the rotational expansion 
that takes place in the supersonic portion of the boundary layer to provide a 
complete qualitative description of the expansion and separation process that 
occurs at the shoulder of a supersonic blunt based body. As mentioned in the 
introduction, the wave interaction theory by itself predicts results that differ 
in several important respects with Hama’s (1967) recent experiments. The 
principal differences are the fact that the lip shock wave forms much closer to the 
corner than the wave interaction theory predicts and that the flow does not 
expand monotonicalIy to the base pressure but experiences a recompression 
beneath the corner on the rear wall, the base pressure being approached from 
below. Theory and experiment suggest that two closely related phenomena are 
present, the separation from the base wall and the coalescence of Mach waves 
from the constant pressure base region. The detailed coupling of these two 
phenomena is schematically shown in figure 9, and is described below. 

The primary expansion of the supersonic flow starts a t  some point slightly 
upstream of the corner. Primary expansion waves have large curvature because 
of the Mach number gradient in the boundary layer. The centre of the primary 
expansion fan, therefore, appears to be located a t  some point d that is of the order 
of a boundary-layer thickness ahead of the corner. This effect is visible in figure 2 
and was noted by Hama. The linearized wave theory in Weinbaum (1966 b)  shows 
that when M > 4 2  the strength of a Mach wave is significantly augmented as it 
propagates through the higher Mach number regions of the boundary layer into 
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the outer flow. Thus, the streamline a t  the outer edge of the boundary layer 
experiences a sizeably greater drop in pressure than a streamline near the sonic 
line when both streamlines have traversed the same primary waves. It has been 
well documented by Hama and others that the pressure drop across the free 

waves 
Lip\ shock 

Compression waves 

Son& line 

FIGURE 9. Schematic diagram of the separation and expansion of a supersonic boundary 
layer at  a blunt-based trailing edge. 

shear layer in the region downstream of the intersection of the lip shock and the 
outer edge of the free shear layer point f is rather small. Regions (6), (7) and (8) 
are, therefore, at essentially the same pressure, the base pressure p8. Let b and f 
denote conditions just ahead of the lip shock and b' and f' conditions just behind 
it. The lip shock must increase in strength between points b and f, for the over- 
expansion at f is greater than that at  b, while the pressure at  points b' and f' are 
both nearly equal to the base pressure. Region (4) is a region of reflected wave 
interaction in which the strength of the lip shock gradually adjusts so that by the 
time the lip shock emerges from the shear layer at point f its strength is just suffi- 
cient to recompress the overexpanded inviscid outer flow back to the base pres- 
sure. The lip shock in regions (2) and (5) is thus the corrective recompression 
needed to balance the initial overexpansion of the outer supersonic portion of the 
boundary layer and the inviscid flow. 

The theory in Weinbaum (1 966 b) and Weiss & Weinbaum (1 966) treats the 
line abb' as a single point, and therefore, incorrectly treats the incipient formation 
of the lip shock. However, downstream of point b', the rotational characteristic 
calculation performed in the above investigations does employ a boundary con- 
dition that is eventually achieved by the actual flow, namely that the Hi = 1 
streamline approaches the measured base pressure. For small distances from the 
corner, the rotational characteristics solution is very poor (the compression waves 
from the M = 1 surface have not yet had a chance to coalesce, whereas for the 
real flow the toe of the lip shock has already formed), while if one proceeds further 
from the corner toward the outer portions of regions (2) and (4) the description 
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of the rotational characteristic solution rapidly improves. It is for this reason 
that the asymptotic strength and direction of the lip shock as predicted by the 
characteristic calculation shown in figure 1 of Weiss & Weinbaum (1966) agrees 
favourably with the experiment on which it was based (Larson, Scott, Elgin & 
Siever 1962). 

The essentially inviscid motion in the supersonic portion of the boundary layer, 
just described, is coupled to the viscous motion in the subsonic underlayer 
through the interaction between the growth of the displacement thickness of the 
subsonic layer and the induced pressure field in the supersonic region. In nego- 
tiating the corner, the subsonic flow encounters an adverse pressure gradient on 
the base wall, see figure 8, which produces first a rapid increase in displacement 
thickness of the viscous underlayer and then separation. These compression 
waves propagate through region 3 in figure 9 into the supersonic flow in region 4 
where they coalesce to form the lip shock wave. Having turned the corner, the 
flow is directed toward the wake centreline and a recompression is required to 
turn the flow back to the free stream direction. While this recompression is 
strongest in the vicinity of the wake reattachment stagnation point its effects 
are readily communicated upstream through the low speed flow in regions 3 
and 8. It is this upstream influence that initiates the interaction on the base wall 
and leads to separation. 

8. The near wake rear stagnation point 
We next look at the reattachment stagnation point formed by the symmetric 

rejoining of two laminar viscous layers. This solution is developed both in rect- 
angular Cartesian co-ordinates Cheng ( 1964) and in polar co-ordinates (Weinbaum 
1966a).? Of particular interest here is the derivation of the closure condition 
described at  the end of $1.  Since all velocities become vanishingly small as the 
stagnation point.is approached, one expects that a Stokes type expansion is valid 
in the stagnation region. The only local boundary and auxiliary conditions 
applicable are that a stagnation point and symmetry plane exist. Thus, 

and 
(8.1) 

u = v = O  a t  r = 0 ,  

$ = $es = 0 a t  8 = 0 and n. 

One can show that the only solutions to the biharmonic equation (2.7) which 
satisfy (8.1) are of the form 

$10) = rm(Alsinm8+A,sin(m-2)8), (8 .2 )  

where m = 2 , 3 , 4 ,  ..., etc. For the lowest root m == 2 ,  A ,  = 0. The rn = 2 term is 
irrotational and, therefore, does not contribute by itself to the non-linear part 
of the vorticity equation (2.6). Thus, the first three terms in the expansion for $ 

$ = Alr2sin28+r3(Blsin38+B,sin8)+r4(C,sin48+C2sin28)+ ..., (8.3a) 
are 

or 
$ = y[2AlX $. (3B1 f B,) X 2  f (B, - B,) y2 f 2(2Clf c2) X3 f 2(c, - 2c1)Xy2] f . . . , 

(8 .3b )  

t The reattachment solution is also presented in Reeves & Buss (1967), which appeared 
subsequent to the writing of this paper. 
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and to O(r4) the equation of the dividing streamline DSL, the streamline that 
separates the flow that is turned back along the axis from the flow that passes 
downstream, is given by 

The slope of this streamline at  any station x near x = 0 is then 

Therefore, as previously deduced by Cheng (1964)) h is infinite at  the origin or 
the DSL stagnates perpendicular to the axis provided A ,  =k 0. The case A ,  = 0, 
while it does correspond to a finite slope, cannot represent the near wake stagna- 
tion point. The axial velocity does not change sign at the stagnation point so that 
the DSL approaches r = 0 with slope - h and leaves with slope +A. 

Of primary interest is the coupling between the forward and reverse flow 
velocities at  the end of the recirculation region. In particular, one wishes to 
know how q*, the magnitude of the velocity on the DSL, and qo, the magnitude 
of the velocity on the wake centreline, are related at  a given x station near the 
stagnation point. The slope of the DXL 

h = .,*I.: = -$:I$,*, 
so that by definition q* = (A,+ l)*$h$, (8.7) 

(8.6) 

where the asterisk denotes conditions on the DXL. Combining ( 8 . 3 b ) )  (8.4) and 
(8.7)) one finds that 

q*(X) = -2(hz+ 1 ) ~ [ 2 ~ , ~ + ( 3 B l + B , ) x 2 + 2 ( 2 ~ , + C , ) x 3 ] .  (8.8) 

The velocity on the centreline from (8.3b) is given by 

qo(X) = 2A1x + (3B1 + B,)X2 f 2(2c1 f cz)X3. (8.9) 

qo is, therefore, simply the term in brackets in (8.8). Hence, 

1 (G), = 4(A2(x)+ 1 ) '  
(8.10) 

Thus, there is a unique relationship between A, q* and qo in the Stokes region, 
region I in figure 10, that must be obeyed if the wake is too close. qo/q* increases 
monotonically from zero at r = 0 to some value corresponding to the asymptotic 
direction of the DXL a t  the edge of region I (see figure 10). It is not clear how to 
interpret the condition imposed by (8.10). Like the Kutta condition at  the trail- 
ing edge of an airfoil, (8.10) is independent of the external flow. This condition 
could, for example, affect the vorticity in the interior of the recirculation region 
since the velocity coupling at the reattachment point may be important in de- 
termining the circulation on the $ = 0 streamline that bounds the recirculation 
region. Suppose one formulates the recirculation region as an initial value prob- 
lem in which one prescribes the shape of and the velocity distribution along the 
DXL, and proceeds downstream toward region I in figure 10 using a suitable 
marching technique. The unknown initial conditions in such a procedure are 
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the reference pressure pb ,  the pressure gradient p J 0 ,  y), and the shear wJ0, y) on 
the base wall. In  such improperly posed initial value problems, the question of 
uniqueness and the stability of the numerical solution are closely related. With 
~ ~ ( 0 ,  y) and ~ ~ ( 0 ,  y) specified, the numerical marching procedure will yield some 

Recompression 

\ 
Rear stagnation point 

FIGURE 10. Wake reattachment, A ,  =k 0. 

value of the ratio qo/q* as the DSL approaches the centreline. However, it would 
seem that unless these initial conditions were chosen correctly, (8.10) will not be 
satisfied and the wake will not close, and that unless pb is correct the flow will 
not pass through the downstream throat predicted by the Crocco-Lees (1952) 
theory. These hypotheses are currently being studied further. 

The author wishes to thank Dr Richard W.Garvine for numerous fruitful 
discussions of this material and for reading and usefully commenting on the final 
manuscript. 

A preliminary version of this paper was given as an invited talk ‘Laminar 
leading and trailing edge flows and the near wake rear stagnation point’ at  the 
AGARD Specialists Meeting on ‘Separated flows ’ at the von K&rm&n Institute 
for Fluid Dynamics 10-13 May 1966, and is available as General Electric TIS 
Report R 66 SD 25. The author wishes to acknowledge the support of the General 
Electric Space Sciences Laboratory, King of Prussia, Pennsylvania, under whose 
sponsorship much of this work was done. 

The throat for a two-dimensional viscous layer is simply the station for which the 
integral 

J I G d y  

across the layer vanishes (see Weinbaum 1967). 
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FIGURE 2 .  Shadowgraph of flow behind a wedge, M,  = 2.61, Rem,, = 1.01 x lo6, courtesy 
of F. R. Hnma ( I  967). 
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